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Abstract

We provide evidence that non-linear dimensionality reduction, clustering and data set parameterization can be
solved within one and the same framework. The main idea is to define a system of coordinates with an explicit
metric that reflects the connectivity of a given data set and that is robust to noise. Our construction, which is based
on a Markov random walk on the data, offers a general scheme of simultaneously reorganizing and subsampling
graphs and arbitrarily shaped data sets in high dimensions using intrinsic geometry.

We show that clustering in embedding spaces is equivalent to compressing operators. The objective of data
partitioning and clustering is to coarse-grain the random walk on the data while at the same time preserving a
diffusion operator for the intrinsic geometry or connectivity of the data set up to some accuracy. We show that the
quantization distortion in diffusion space bounds the error of compression of the operator, thus giving a rigorous
justification fork-means clustering in diffusion space and a precise measure of the performance of general clustering

algorithms.

Index Terms

Machine learning, Text analysis, Knowledge retrieval, Quantization, Graph-theoretic methods, Compression

(coding), Clustering, Clustering similarity measures, Information visualization, Markov processes, Graph algorithms

. INTRODUCTION

When dealing with data in high dimensions, one is often faced with the problem of how to reduce th
complexity of a data set while preserving information that is important for, for example, understandin
the data structure itself or for performing later tasks such as clustering, classification and regressic
Dimensionality or complexity reduction is an ill-posed problem until one clearly defines what one is

ready to lose. In this work, we attempt to find both a parameterization and an explicit metric that reflec



the intrinsic geometry of a given data set. With intrinsic geometry, we here mean a set of rules the
describe the relationship between the objects in the data set without reference to structures outside o
in our case, we define intrinsic geometry by the connectivity of the data points in a diffusion proces
One application of this work, is manifold learning where we have a manifold, say a 2D “Swiss roll”,
embedded in a higher-dimensional space — but more generally, the problems of data parameterizat
dimensionality reduction and clustering extend beyond manifold learning to general graphs of objects tf
are linked by edges with weights.

There is a large body of literature regarding the use of the spectral properties (eigenvectors a
eigenvalues) of a pairwise similarity matrix for geometric data analysis. These methods can rough
be divided into two main categories: spectral graph cuts [1], [2], [3] and eigenmaps [4], [5], [6], [7].
The two methodologies were originally developed for different types of applications: segmentation ar
partitioning of graphs versus locality-preserving embeddings of data sets, respectively. Below we brie
review previous work and how it relates to the diffusion framework.

Suppose thaf2 = {z4,...,z,} is a data set of points, and assume that these points form the nodes c
a weighted graph with weight functiom(z,y). In the graph-theoretic approach [8] to data partitioning,
one seeks to divide the set of vertices into disjoint sets, where by some measure, the similarity among
vertices in a set is high, and the similarity across different sets is low. Different algorithm use differer
matrices but, in general, these spectral grouping methods are based on an analysis of the domir
eigenvectors of a suitably normalized weight matrix (see e.g. [1] for a review). If the weight functior
w(x,y) satisfies certain conditions (symmetry and pointwise positivity), then one can interpret the pairwis
similarities as edge flows in a Markov random walk on the graph. In this probabilistic formulation, the
transition probability of going from point to y in one step is

w(z,y)
L S
The Normalized Cut problem provides a justification and some intuition for the use of the first non
trivial eigenfunction of the random walk’s transition matrix [2]; the authors Shi and Malik also mention
using higher-order eigenfunctions but do not provide a theoretical justification for such an analysis. Mo
recently, Meila and Shi [3] have shown that the transition maktikas piecewise constant eigenvectors
relative to a partitionS = (51, Ss, ..., Sx) when the underlying Markov chain is lumpable with respect
to S, i.e. when one is able to group vertices together due to similarities of their transition probabilitie
to the subsetsy;. The authors also define a “Modified Ncut” algorithm which, for the special case of
lumpable Markov chains, finds all segments by.-means of the eigenvectors &f.

Despite recent progress in the field of spectral graph theory, there are still many open questions.

particular: What is the intuition behind spectral clustering when eigenvectors are not piece-wise const:



(and Markov chains are not lumpable)? Naturally occuring data sets only display, at best, approxime
lumpability; the issue then is whether we can say something more precise about the performance of vari
clustering algorithms. Furthermore, for general data sets, which eigenvectors of the Markov matrix shot
be considered and what is the relative importance of these? Below, we answer these questions by unify
ideas in spectral clustering, operator compression and data set parameterization.

The problem of spectral clustering is very closely related to the problem of finding low-dimensiona
locality-preserving embeddings of data sets. For example, suppose that we wish to find an embeddinc

Q2 in R? according to

w = f(x) = (fi(@),. ., fo(2))

that preserves the local neighborhood information. Several algorithms, such as LLE [4], Laplacian eige
maps [6], Hessian eigenmaps [7], LTSA [5] and diffusion maps [9], [10], all aim at minimizing distortions
of the form Q(f) = >, Qi(f) whereQ;(f) is a symmetric, positive semi-definite quadratic form that
measures local variations gf aroundz;. The p-dimensional embedding problem can, in these cases, be
rewritten as an eigenvalue problem where the firsigenvectors f1, ..., f,) provide the optimal embedding
coordinates. The close relationship between spectral clustering and locality-preserving dimension reduct
has, in particular, been pointed out by Belkin and Niyogi. In [6], the authors show that the Laplacian c
a graph (whose eigenvectors are used in spectral cuts) is the discrete analogue of the Laplace-Beltr
operator on manifolds, and the eigenfunctions of the latter operator have properties desired for embeddir
However, as in the case of spectral clustering, the question of the number of eigenvectors in existi
eigenmap methods is still open. Furthermore, as the distance metric in the embedding spaces is
explicitly defined, it is not cleahow one should cluster and partition data. The usual approach is: First
pick a dimensiork, then calculate the firgt non-trivial eigenvectors and weight these equally in clustering
and other subsequent data analysis.

The contribution of this paper is two-fold: First, we provide a unified framework for spectral data
analysis based on the idea of diffusion and put previous work in a new perspective. Our starting point
an explicit metric that reflects the connectivity of the data set. This so called “diffusion metric” can be
explained in terms of transition probabilities of a Markov chain that evolves forward in time and is, unlike
the geodesic distance, or the shortest path of a graph, very robust to noise. Similar distance measi
have previously been suggested in clustering and data classification, see for example [11]. However,
use of such probabilistic distance measures in data parameterization is completely new. This paper uni
various ideas in eigenmaps, spectral cuts and Markov random walk learning (see Table | for a list
different methods). We show that, in the diffusion framework, the defined distance measure is induced

a non-linear embedding in Euclidean space where the embedding coordinates are weighted eigenvec



Methods for clustering and non-linear dim. reductipndata set parameterizatior)?explicit metric in embedding space?
Spectral graph methods [1], [2], [3] not directly addressed no
Eigenmaps [4], [5], [6], [7] yes no
Isomap [13] yes yes
Markov random walk learning [11] no yes
Diffusion maps yes yes
TABLE |

A SIMPLIFIED TABLE OF DIFFERENT METHODS FOR CLUSTERING AND NOMNLINEAR DIMENSIONALITY REDUCTION

of the graph Laplacian. Furthermore, the time parameter in the Markov chain defines the scale of t
analysis, which in turn, determines the dimensionality reduction or the number of eigenvectors in tf
embedding.

The other contribution of this work is a novel approach to data partitioning and graph subsampling bas
on coarse-graining the dynamics of the Markov random walk on the data set. The goal is to subsam
and reorganize the data set while retaining the spectral properties of the graph, and thus also the intrir
geometry of the data set. We show that in order to maximize the quality of the eigenvector approximatic
we need to minimize a distortion in the embedding space. Consequently, we are relating clustering
embedding spaces to lossy compression of operators — which is a key idea in this work. As a by-produ
we are also obtaining a rigorous justification fomeans clustering in diffusion space. The latter method
is, by construction, useful when dealing with data in high dimensions, and can (as in anyikeneahs
algorithm [12]) be applied to arbitrarily shaped clusters and abstract graphs.

The organization of the paper is as follows. In Section Il, we define diffusion distances and discuss the
connection to the spectral properties and time evolution of a Markov chain random walk. In Section IlI, w
construct a coarse-grained random walk for graph partitioning and subsampling. We relate the compress
error to the distortion in the diffusion space. Moreover, we introduce diffusiomeans as a technique
for distortion minimization. Finally, in Section 1V, we give numerical examples that illustrate the ideas
of a framework for simultaneous non-linear dimensionality reduction, clustering and subsampling of da

using intrinsic geometry and propagation of local information through diffusion.

II. GEOMETRIC DIFFUSION AS A TOOL FOR HIGHDIMENSIONAL DATA ANALYSIS
A. Diffusion distances

Our goal is to define a distance metric on an arbitrary set that reflects the connectivity of the poin
within the set. Suppose that one is dealing with a data set in the form of a graph. When identifyin

clusters, or groups of points, in this graph, one needs to measure the amount of interaction, as descri



by the graph structure, between pairs of points. Following this idea, two points should be considered to
close if they are connected by many short paths in the graph. As a consequence, points within regions
high density (defined as groups of nodes with a high degree in the graph), will have a high connectivi
The connectivity is furthermore decided by the strengths of the weights in the graph. Below, we review tf
diffusion framework that first appeared in [10], and put it into the context of eigenmaps, dimensionalit
reduction and Markov random walk learning on graphs.

Let G = (Q2, W) be a finite graph witm nodes, where the weight matriX’ = {w(z, y) }, yeq satisfies
the following conditions:

o symmetry:WW = W7, and

« pointwise positivity:w(z,y) > 0 for all z,y € Q,
The way we define the weights should be completely application-driven, the only requirement being th
w(z,y) should represent the degree of similarity or affinity (as defined by the applicationpgidly. In
particular, we expect(z, z) to be a positive number. For instance, if we are dealing with data points on a
manifold, we can start with a Gaussian kerngl= exp (—||z — y||?/¢), and then normalize it in order to
adjust the influence of geometry versus the distribution of points on the manifold. Different normalizatio
schemes and their connection to the Laplace-Beltrami operator on manifolds in the large sample lin
n — oo ande — 0 are discussed in [9].

The graphG with weights W represents our knowledge of the local geometry of the set. Next we
define a Markov random walk on this graph. To this end, we introduce the dégr¢®f nodex as

d(z) = Zw(x, z).

z€Q
If one definesP to be then x n matrix whose entries are given by

p1<x7y) = wcg?;’j;y) )

thenp, (z,y) can be interpreted as the probability of transition frono y in 1 time step. By construction,
this quantity reflects the first-order neighborhood structure of the graph. A new idea introduced in tf
diffusion maps framework, is to capture information on larger neighborhoods by taking powers of th
matrix P, or equivalently, to run the random walk forward in time.Af is thet"" iterate of P, then the
entry p,(z, y) represents the probability of going fromto y in ¢ time steps. Increasing corresponds to
propagating the local influence of each node with its neighbors. In other words, the quntaflects

the intrinsic geometry of the data set defined via the connectivity of the graph in a diffusion process, al
the timet of the diffusion plays the role of a scale parameter in the analysis.

If the graph is connected, we have that [8]:

tEEloo Dt (‘737 y) - ¢0<y) ) (1)



where ¢, is the unique stationary distribution
d(x)

Go(r) = =———.
) = e d)
This quantity is proportional to the degreeaoin the graph, which is one measure of the density of points.

The Markov chain is furthermore reversibles., it verifies the following detailed balance condition

Go(z)p1(z,y) = do(y)p1(y, ) . (2)

We are mainly concerned with the following idea: For a fixed but finite valied, we want to define
a metric between points d2 which is such that two points and z will be close if the corresponding
conditional distributiong;(x,.) andp,(z,.) are close. A similar idea appears in [11], where the authors
consider theL! norm ||p;(z,.) — p:(z,.)||. Alternatively, one can use the Kullback-Leibler divergence or
any other distance between(z,.) and p;(z,.). However, as shown below, the* metric between the
conditional distributions has the advantage that it allows one to relate distances to the spectral proper
of the random walk — and thereby, as we will see in the next sectonnect Markov random walk
learning on graphs with data parameterization via eigenmajs in [14], we will define the “diffusion

distance”D, betweenz andy as the weighted.? distance

2
P \r,Y) — P %, Y
D(w.2) = o)~ (el = 3 LD EA ©)
ere 0(y)
where the “weights”%#m penalize discrepancies on domains of low density more than those of high

density.

This notion of proximity of points in the graph reflects the intrinsic geometry of the set in terms of
connectivity of the data points in a diffusion process. The diffusion distance between two points wil
be small if they are connected by many paths in the graph. This metric is thus a key quantity in tt
design of inference algorithms that are based on the preponderance of evidences for a given hypothe
For example, suppose one wants to infer class labels for data points based on a small humber of labe
examples. Then one can easily propagate the label information from a labeled exangpkhe new
point y following (i) the shortest path, or (ii) all paths connectindgo y. The second solution (which is
employed in the diffusion framework and in [11]) is usually more appropriate, as it takes into accour
all “evidences” relatinge to y. Furthermore, since diffusion-based distances add up the contribution fromn
several paths, they are also (unlike the shortest path) robust to noise; the latter point is illustrated via

example in Section IV-B.

B. Dimensionality reduction and parameterization of data by diffusion maps

As mentioned, an advantage of the above definition of the diffusion distance is the connection to tl

spectral theory of the random walk. As is well known, the transition mderithat we have constructed



has a set of left and right eigenvectors and a set of eigenvaldes |A\i| > ... > |\, _1]:
@7 P = X\;¢] and Py = \ji);

where it can be verified that, = 1, ¥y = 1 and thatg! ¢, = ;. In fact, left and right eigenvectors are
dual, and can be regarded as signed measures and test functions, respectively. These two sets of ve

are related according to

(x) = “lz) forall z € Q. 4)
$o()
For ease of notation, we normalize the left eigenvector® afith respect tol /¢o:
2
2 ¢i(z)

= = 1 5 5
”¢ZH1/¢0 ;(b()(x) ( )

and the right eigenvectors with respect to the weight
I, = Zwl (6)

If p,(x,y) is the kernel of thet'" iterate P!, we will then have the following biorthogonal spectral

decomposition:

=) Nab(@)e;(y)- (7)

7>0
The above identity corresponds to a weighted principal component analys®. ofhe first k& terms
provide the best rank-approximation ofP?, where “best” is defined according to the following weighted

metric for matrices:
1
All? = 2__—
A % Ey do(z)a(z,y) o (0)

Here is our main point: If we insert Equation 7 into Equation 3, we will have that

n—1

Di(x,z) = Y N'(dh(x) — ¥(2))°

j=1

Sinceyy = 1 is a constant vector, it does not enter in the sum above. Furthermore, because of the dec
of the eigenvalues, we only need a few terms in the sum for a certain accuracy. To be precigét)let

be the largest index such thaf);|* > §|\;|*. The diffusion distance can then be approximated to relative

precisiond using the firstg(¢) non-trivial eigenvectors and eigenvalues according to

q(t)

DX(x,2) ~ thw] P;(2))2.

1The speed of the decay depends on the graph structure. For example, for the special case of a fully connected graph, the first eigen
will be 1 and the remaining eigenvalues will be equal to 0. The other extreme case is a graph that is totally disconnected with all eigenvall

equal to 1.



Now observe that the identity above can be interpreted as the Euclidean distaR€€ ifi we use the
right eigenvectors weighted with; as coordinates on the data. In other words, this means that if we

introduce the diffusion map

A ()
oo | Rl ®)
)‘Z(t)wQ(t)<x>
then clearly,
q(t)
Di(w,2) =y N (4(x) = 5(2))° = [Wel) = Wo(2)|* (9)

j=1

Note that the factor$§. in the definition ofWy, are crucial for this statement to hold.

The mapping?, : Q — R® provides a parameterization of the data@gbr equivalently, a realization
of the graphs' as a cloud of points in a lower-dimensional sp&¢€), where the re-scaled eigenvectors are
the coordinates. The dimensionality reduction and the weighting of the relevant eigenvectors are dicta
by both the timet of the random walk and the spectral fall-off of the eigenvalues.

Equation 9 means that, embeds the entire data seti®(*) in such a way that the Euclidean distance is
an approximation of the diffusion distance. Our approach is thus different from other eigenmap methoc
Our starting points is aexplicitly defined distance metric on the data set or graph. This distance is alsc

the quantity we wish to preserve during a non-linear dimensionality reduction.

[Il. GRAPH PARTITIONING AND SUBSAMPLING

In what follows, we describe a novel scheme for subsampling data sets that — as above — preser
the intrinsic geometry defined by the connectivity of the data points in a graph. The idea is to construct
coarse-grained version of the original random walk on a new grfNamlrith similar spectral properties. This
new Markov chain is obtained by grouping points into clusters and appropriately averaging the transitic
probabilities between these clusters. We show that in order to retain most of the spectral properties
the original random walk, the choice of clusters in critical. More precisely, the quantization distortion ir
diffusion space bounds the error of the approximation of the diffusion operator.

One application is dimensionality reduction and clustering of arbitrarily shaped data sets using geomet
see Section IV for some simple examples. However, more generally, the construction also offers

systematic way of subsampling operators [15] and arbitrary graphs using geometry.



A. Construction of a coarse-grained random walk

Start by considering an arbitrary partitigd; }1<;<x of the set of node$). Our aim is to aggregate
the points in each set in order to coarse-grain both the state aed the time evolution of the random
walk. To do so, we regard each sgtas corresponding to the nodes ok-aode grapkfl, whose weight

function is defined as
(S, 85) =D > dola)pila,y),
TeS; yGSj
where the sum involves all the transition probabilities between paimsS; andy € S; (see Figure 1).

Fig. 1. Example of a coarse-graining of a graph: For a given partifloa S; U S2 U Ss5 of the set of nodes in a grapf, we define

a coarse-grained graﬂﬁ by aggregating all nodes belonging to a subSgtinto a meta-node. By appropriately averaging the transition
probabilities between points € S; andy € S;, for i, 5 = 1,2,3, we then compute new weightg(S;, S;) and a new Markov chain with
transition probabilitie®(.S;, S;).

From the reversibility condition of Equation 2, it can be verified that this graph is symmetric, i.e. tha
w(S;,S;) = w(S;,5;). By setting
0(S)) = > tolx),

T€S;
one can define a reversible Markov chain on this graph with stationary distribﬁiierﬂ%’“ and transition

probabilities

p(Si, 55) = % - Z Z ?0(;))%(%’%/)'

z€S; yES; 0( :
Let P be thek x k transition matrix on the coarse-grained graph. More generally) forl < n — 1, we

define in a similar way coarse-grained versionsppby summing over the nodes in a partition:

o(S) =Y dilx). (10)
z€S;
As in Equation 4, we define coarse-grained versiong,cdccording to the duality condition
- o1(S;
Julsy = 28 1)

$o(5i)
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which is equivalent to taking a weighted average/pfover S;:

Z% 12

z€S;
The coarse-grained kerng(S;, S;) contains all the information in the data regarding the connectivity
of the new nodes in the gragghi. The extent to which the above vectors constitute approximations of the
left and right eigenvectors P depends on the particular choice of the partit{cfi}. We investigate this

issue more precisely in the next section.

B. Approximation error. Definition of geometric centroids

In a similar manner to Equation 5 and Equation 6, we define the norm on coarse-grained signed meast
5, to be

ACD)
H¢1H1/¢0 ;50(5
and on the coarse-grained test functidfasto be

3, = D 0F(Si)on(S:)

We now introduce the definition of a geometric centroid, or a representative point, of each paftition
Definition 1 (geometric centroid)Let 1 < i < k. The geometric centroid(S;) of subsetS; of Q2 is

defined as the weighted sum

TE€S;
The following result shows that for small values bf gbl and v, are approximate left and right

eigenvectors of® with eigenvaluel\!.
Theorem 2:We have for0 <[ <n —1,

OFP = NgT + ¢, and Py = Ny + f;.

where

”el”1/¢ < 2D and Hfl”?;o < 2D,

and

D=3 Y o)l ¥i(x) —c(S))I?

1 xES;
This means that if\|* > /D then ¢, and ), are approximate left and right eigenvectors @fwith

approximate eigenvalugl. The proof of this theorem can be found in Appendix .
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The previous result also shows that in order to maximize the quality of approximation, we need t

minimize the following distortion in diffusion space:

D = ZZ% )W () — e(S:))]” (13)

i xES;

~ E,; { Ex|; {H\I/t(X) —c(S))|PIX € S’i} } ’

which can also be written in terms of a weighted sum of pairwise distances according to

D= 56 T Y P L ) vt (14

z€S; €S, Qb()( )

Q

%Ei {Ex.zi {|9:(X) - W(2)|1X, 2 € S} } .

C. An algorithm for distortion minimization

Finally, we make a connection to kernelmeans and the algorithmic aspects of the minimization. The
form of D given in Equation 13 is classical in information theory, and its minimization is equivalent to
solving the problem of quantizing the diffusion space withodewords based on the mass distribution of
the sample se¥,(2). This optimization issue is often addressed via thmeans algorithm [16] which
guarantees convergence towards a local minimum:

1) StepO: initialize the partition{SZ.(O)}lggk at random in the diffusion space,

2) Forp > 0, update the partition according to
SZ-(p) = {x such thati = arg min ||V;(z) — C(S](-p_l))HQ},
J

wherel < i < k, and c(S](.p_l)) is the geometric centroid oﬁj(.p_l),
3) Repeat point 2 until convergence.
A drawback of this approach is that each center of n{a$S;)} may not belong to the selt,(F) itself.
This can be a problem in some applications where such combinations have no meaning, such as in
case of gene data. In order to obtain representafivgsof the clusters that belong to the original et
we introduce the following definition of diffusion centers:

Definition 3 (diffusion center)The diffusion center(S) of a subsetS of 2 is any solution of

arg min [ W(z) = o(S)]*
This notion does not define a unique diffusion center, but it is sufficient for our purpose of minimizing
the distortion. Note that(S) is a generalization of the idea of center of mass to graphs.
Now, if {S;} is the output of thek-means algorithm, then we can assign to each poins;irthe
representative centei(S;). In that sense, the grapﬁl is a subsampled version 6f that, for a given value

of k, retains the spectral properties of the graph. The analysis above provides a rigorous justification
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k-means clustering in diffusion spaces, and furthermore links our work to both spectral graph partitionir
(where often only the first non-trivial eigenvector of the graph Laplacian is taken into account) an

eigenmaps (where one uses spectral coordinates for data parameterization).

IV. NUMERICAL EXAMPLES
A. Importance of learning the nonlinear geometry of data in clustering

In many applications, real data sets exhibit highly nonlinear structures. In such cases, linear methc
such as Principal Components will not be very efficient for representing the data. With the diffusio
coordinates, however, it is possible to learn the intrinsic geometry of data set, and then project the d
points into a non-linear coordinate space with a diffusion metric. In this diffusion space, one can us
classical geometric algorithms (such as separating hyperplane-based méthoesns algorithms, etc.)
for unsupervised as well as supervised learning.

To illustrate this idea, we study the famous Swiss roll. This data set is intrinsically a surface embedd:
in 3 dimensions. In this original coordinate system, global extrinsic distances, such as the Euclide
distance, are often meaningless as they do not incorporate any information on the structure or shape
the data set. For instance, if we run theneans algorithm for clustering with = 4, the obtained clusters
do not reflect the natural geometry of the set. As shown in Figure 2, there is some “leakage” betwe:

different parts of the spiral due to the convexity of theneans clusters in the ambient space.

Fig. 2. The Swiss roll, and its quantization kymeans £ = 4) in the original coordinate system (left) and in the diffusion space (right).

As a comparison, we also show in Figure 2 the result of runningktheeans algorithm in diffusion

space. In the latter case, we obtain meaningful clusters that respect the intrinsic geometry of the data
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B. Robustness of the diffusion distance

One of the most attractive features of the diffusion distance is its robustness to noise and sm
perturbations of the data. In short, its stability follows from the fact that it reflects the connectivity
of the points in the graph. We illustrate this idea by studying the case of data points approximately lyir
on a spiral in the two-dimensional plane. The goal of this experiment is to show that the diffusion distanc
is a robust metric on the data, and in order to do so, we compare it to the shortest path (or geode:
distance that is employed in schemes such as ISOMAP [13].

We generate 1000 instances of a noisy spiral in the plane, each corresponding to a different realizat
of the random noise perturbation (see Figure 3). From each instance, we construct a graph by connec
all pairs of points at a distance less than a given threshplthich is kept constant over the different
realizations of the spiral. The corresponding adjacency maéltrigontains only zeros or ones, depending
on the absence or presence of an edge, respectively. In order to measure the robustness of the diffu
distance, we repeatedly compute the diffusion distance between two points of referemmeB in all
1000 noisy spirals. We also compute the geodesic distance between these two points using Dijkstt

algorithm.

12— o : : * ‘ " ‘ ‘

!
08f
0.6} ST
04f :

0.2} S

_06 L

-0.8 . . . . . -08

Fig. 3. Two realizations of a noisy spiral with points of referengeand B. Ideally, the shortest path betweenhand B should follow the
branch of the spiral (left). However, some realizations of the noise may give rise to shortcuts, thereby dramatically reducing the length
the shortest path (right).

As shown in Figure 3, depending on the presence of shortcuts arising from points appearing betwe
the branches of the spiral, the geodesic distance (or shortest path length) betveewhs may vary

by large amounts from one realization of the noise to another. The histogram of all geodesic distanc
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measurements betweehand B over the 1000 trials is shown on Figure 4. The distribution of the geodesic
distance appears poorly localized, as its standard deviation equals 42% of its mean. This indicates f

the geodesic distance is extremely sensitive to noise and thus unreliable as a measure of distance.

Geodesic distance

100

50

0 0.5 1 15 2

Diffusion distance

100

50 1

Fig. 4. Distribution of the geodesic (top) and diffusion (bottom) distances. Each distribution was rescaled in order to have a mean eq
to 1.

The diffusion distance, however, is not sensitive to small random perturbations of the data set becau
unlike the geodesic distance, it represents an average quantity. More specifically, it takes into account
paths of length less than or equalitdhat connectd and B. As a consequence, shortcuts due to noise
will have little weight in the computation, as the number of such paths is much smaller than the numb
of paths following the shape of the spiral. This is also what our experiment confirms: Figure 4 show
the distribution of the diffusion distances betweérand B over the random trials. In this experiment,
was taken to be equal t@00. The corresponding histogram shows a very localized distribution, with a
standard deviation equal to onfo of its mean, which translates into robustness and consistency of the

diffusion distance.

C. Organizing and clustering words via diffusion maps

Many of the ideas in this paper can be illustrated with an application to word-document clustering. W
here show how we can measure the semantic association of words using diffusion distances, and how
can organize and form representative meta-words using diffusion maps ahehtbans algorithm.

Our starting point is a collection of = 1161 Science News articles. These articles belong tlifferent

categories (see [17]). Our goal is to cluster words based on their distribution over the documents. Fr
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the database, we extract the 20 most common words in each document, which corresponds to 3218 un
words total. Out of these words, we then select words with an intermediate document conditional entroj
The conditional entropy of a document given a wordy is defined asf{ x|, = — >, p(z|y) log p(z|y).
Words with a very low entropy occur, by definition, in few documents and are often not good descriptot
of the database, while high-entropy words such as “it”, “if”, “and”, etc. can be equally uninformative.
Thus, in our case, we choose a setf= 1004 words with entropy2 < H(X|y) < 4. As in [17], we

calculate the mutual information between documerand wordy according to

My = log Je.y
Y ngﬁ,yznfém ’

where f, , = ¢,,/N, andc,, is the number of times word appears in document. In the analysis

below, we describe worg in terms of thep-dimensional feature vector

ey = [M1,y, Moy, ..My 4]

Ouir first task is to find a low-dimensional embedding of the words. We form the kernel
_el?
w(e;, e;) = exp (—Hela—;]H) ,

and normalize it, as described in Section II-A, to obtain the diffusion kefitel, ;). We then embed the
data using the eigenvalueé and the eigenvectors, of the kernel (see Equation 8). As mentioned, the
effective dimensionality of the embedding is given by the spectral fall-off of the eigenvalues.FdR
andt = 4, we have that\0/\1)" < 0.1, which means that we have effectively reduced the dimensionality
of the originalp-dimensional problem, whene= 1161, with a factor of about /100. Figure 5 shows the
first two coordinates in the diffusion map; Euclidean distances in the figure only approximately reflec
diffusion distances since higher-order coordinates are not displayed. Note that the words have roughly b
rearranged according to their semantics. Starting to the left, moving counter-clockwise, we have wor
that, respectively, express concepts in medicine, social sciences, computer science, physics, astronc
earth sciences and anthropology.

Next, we show that the original004 words can be clustered and grouped into representative “meta-
words” by minimizing the distortion in Equation 13. Thhemeans algorithm withk = 100 cluster leads
to the results in Figure 5. Table Il furthermore gives some examples of diffusion centers and words
a cluster. The diffusion centers or “meta-words” form a coarse-grained representation of the word gra
and can, for example, be used as conceptual indices for document retrieval and document clustering. T

will be discussed in later work.
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Diffusion center| All other words in cluster
psychiatric depression, psychiatrist, psychologist
talent award, competition, finalist, intel, prize, scholarship, student, winner
laser beam, nanometer, photon, pulse, quantum
velocity detector, emit, infrared, ultraviolet
gravitational bang, cosmo, gravity, hubble
orbiting jupiter, orbit, solar
geologic beneath, crust, depth, earthquake, ice, km, plate, seismic, trapped, vo|canic
warming climate, el, nino, pacific, weather
underwater atlantic, coast, continent, floor, island, marine, seafloor, sediment
ecosystem algae, drought, dry, ecologist, extinction, forest, gulf, lake, pollution, river
farmer carolina, crop, fish, florida, insect, nutrient, pesticide, pollutant,

soil, tree, tropical, wash, wood
virus aids, allergy, hiv, resistant, vaccine, viral
cholesterol aging, artery, fda, insulin, obesity, sugar, vitamin

TABLE I

EXAMPLES OF DIFFUSION CENTERS AND WORDS IN A CLUSTER

V. DISCUSSION

In this work, we provide evidence that clustering, graph partitioning and data set parameterization c
be solved within one and the same framework. Our starting point is to find a meaningful representati
of the data, and texplicitly define a distance metric on the data. Here we propose using a system c
coordinates and a metric that reflects the connectivity of the data set. By doing so, we lay down a so
foundation for subsequent data analysis.

All the geometry of the data set is captured in a diffusion kernel. However, unlike SVM and so calle
“kernel methods” [18], [19], [20], we are working with the embedding coordinates explicitly. Our method
is completely data driven: both the data representation and the kernel are computed directly on the d.
The notion of a distance allows us to more precisely define our goals in clustering and dimensionali
reduction. In addition, the diffusion framework makes it possible to directly connect grouping in embeddin
spaces to spectral graph clustering and data analysis by Markov chains [21], [11].

In a sense, we are extending Meila and Shi’s work [3] from lumpable Markov chains and piece-wis
constant eigenvectors to the general case of arbitrary Markov chains and arbitrary eigenvectors. The
idea is to work with embedding spaces directly and also to take powers of the transition matrix. The tin
parameter sets the scale of the analysis. Note also that by using different valugsae are able to
perform a multiscale analysis of the data [22], [23].

Our other contribution is a novel scheme for simultaneous dimensionality reduction, parameterizatic
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Fig. 5. Embedding an&-means clustering of 1004 words fér= 4 and k& = 100. The colors correspond to the different word clusters,
and the text labels the representative diffusion center or “meta-word” of each word cluster. Note that the words are automatically arranc

according to their semantics.

and subsampling of data sets. We show that clustering in embedding spaces is equivalent to compres
operators. As mentioned, the diffusion operator defines the geometry of our data set. There are sew
ways of compressing a linear operator, depending on what properties one wishes to retain. For instar
in [22], the goal is to maintain sparseness of the representation while achieving the best compression r
On the other hand, the objective in our work is to cluster or partition a given data set while at the san
time preserving the operator (that captures the geometry of the data set) up to some accuracy. We sl
that, for a given partitioning scheme, the corresponding quantization distortion in diffusion space boun:
the error of compression of the operator. This gives us a precise measure of the performance of clustel
algorithms. To find the best clustering, one needs to minimize this distortion, aridrtieans algorithm

is one way to achieve this goal. Another aspect of our approach is that we are coarse-graining a Mar}
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chain defined on the data, thus offering a general scheme to subsample and parameterize graphs b

on intrinsic geometry.
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APPENDIX

In this section, we provide a proof for Theorem 2, which we recall as
Theorem 4:We have for0 <[ <n —1,

OF P = No¥ + e and Py = Ny + fi.

where

||el”1/¢> < 2D and Hfl”ggo <2D,

and

D=3 > o)l ¥i(x) —c(S))I?

i TES;
This means that if\|* > /D then 51 and ¢, are approximate left and right eigenvectorsl?)fwith
approximate eigenvalug!.

Proof: We start by treating left eigenvectors: For alE S;, we define

rij(2) = B(Si, 55) — mu(=, 55).

Then
@l = |2 2 a,5) - = 5))
z€S; SZ
Po(x)
< Z Z|pt — (2, 9))
TES; Sl) yeS;
<27 ¢° (Z do(y ) (Z¢ pi(. ) mz,y)?) (Cauchy-Schwarz)
zeS; yes yes
<

¢O I 1 2
\/ Z Sl) (Z (b(]—(y)‘pt(x’y) _pt(27y>| )

z€S; yeS;



Another application of the Cauchy-Schwarz inequality yields

‘TZ] Z ¢0 Z (b |pt

z€S; ¢0 yeS

Thus,

SwS = ZZ¢Z SuS

i zES;

= > > a2

i 2€S;

= )‘féﬁz

Z@

i zZES;

We therefore define; € R by

= aul2)ry(2)

i z€S;

To prove the theorem, we need to bound

er(S;)?
le l”1/¢>o - Z q?lo(Sﬂ '

First, observe that by the Cauchy-Schwartz inequality,

512 (T3 4) (S5 niera

i z€S i z€S,

Now, since¢, was normalized, this means that

2 < (Z Z%(@%O(@) :

i zES;

Invoking inequality (15), we conclude that

+ZZ¢Z Tz]

pt(z7y)‘2

(pe(z, S;) +14(2))

)

CHIESH HIE Z% ) $~ ()m(a: W) -z )P

z€S; 9250 Sl) y€S;

i zES;
< ZZ% Z¢ Zgbo pe(,y) — pi(z, )]
i z€8; xE€S; 0 Yy
~ %o 1’)
S ¢0 t(x7z)
EADE Y Hehs >
SBCIDIPIE ©0lt) G0l 1, () — ()

5 55 0(S) do(S )

ZZ ¢o(x) ¢o(z)

2€8; x€S; ¢0 Sl) (b(]( )
c(SI* +11T(2) —

< Zgo
X ([ Wi (z) —

c(SHII* — 2(y(x)

—c(5:), Wi(z) —

19

(15)
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By definition of ¢(.S;),

Po() o) W, (z) —c(S;), Wi(z) —e(S;)) =0
225 S@)¢0(5i)< () = (S0, Wal2) = e(8)) =0,

leal? 5, <2 > do(@)|[We(z) — (S

i xES;

As for right eigenvectors, the result follows from Equation 11 and the fact that the coarse-grained Marke

and therefore

chain is reversible with respect . Indeed,
Pyi(S) = Y pSi, S))i(S))
j

p(Sz,S)
¢0( )

E ——_24,(S;) by reversibilit

—— 2 4,(S;) by Equation 11

t¢1( )+ e (Si)

"Go(S)) olS))
= Majy(S)) + aS) by Equation 11.
)+ 3 gy Y B

If we set f,(S;) = e;(S;)/d0(S;), we conclude that

Si)? ~
1£211% _Z%%(S)—Heﬂl/d) <2D.
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